Math 474 - Homework \# 6 More on Random Variables, Distributions, and Variance

1. Consider the experiment where you flip a coin 3 times. Let X denote the number of tails that occur.
(a) Draw a picture of X and of of the probability function p of X.
(b) Calculate $E[X]$ and $\operatorname{Var}[X]$.
2. Consider the experiment where you roll two 4 -sided dice. Let X be the sum of the two dice.
(a) Draw a picture of X and of the probability function p of X.
(b) Draw a picture of the cumulative distribution function F of X.
(c) Calculate $E[X]$ and $\operatorname{Var}[X]$ and $\sigma=\sigma_{X}$.
3. Consider the experiment where you roll two 4 -sided dice. Let X be the maximum of the two dice.
(a) Draw a picture of X and of the probability function p of X.
(b) Draw a picture of the cumulative distribution function F of X.
(c) Calculate $E[X]$ and $\operatorname{Var}[X]$ and $\sigma=\sigma_{X}$.
4. You are interested in two games: game A and game B.

- In game A , you pick a number between 1 and 100. A ball is drawn randomly from a box with balls that are numbered between 1 and 100. If the ball with your number is drawn then you win $\$ 74$. Otherwise you loose $\$ 1$.
- In game B , there are four numbers to choose from. They are 1 , 2,3 , and 4 . You pick a number. Then a ball is drawn from a bag containing balls numbered $1,2,3$, and 4 . If your number is selected, then you win $\$ 2$. Otherwise you loose $\$ 1$.

Answer the following questions.
(a) For each game let X be the amount of money won or lost. Graph the probability function for X.
(b) What is the expected value and variance of game A ?
(c) What is the expected value and variance of game B ?
(d) What game should you play?
5. Let X be a discrete random variable. Let $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var}[X]$.
(a) Let k be a positive real number. Use Chebyshev's inequality to show that $P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$
(b) Show that $P(|X-\mu| \geq 2 \sigma) \leq \frac{1}{4}$. [Note: This says that the probability that a data point is at least 2 standard deviations away from the mean (on either side) is at most 25%.
6. The binomial distribution applies when we are interested in the number of successes in a fixed number of Bernoulli trials. What if instead we studied how long it takes to get the first success in a series of Bernoulli trials. That is we look at the probability of having a string of failures (that is, multiple failures in a row) and then a success.

More specifically, let $0<p<1$ and $q=1-p$. Consider the experiment where we do consecutive independent Bernoulli trials with probability p of success and q of failure. We repeat the experiment until we get the first success and then we stop.
(a) What is a sample space S for this experiment? Let X be the number of trials until the first success occurs. Find a formula for $P(X=k)$. Note: X is called a Geometric random variable.
(b) Sketch the probability function $p(k)=P(X=k)$ when the probability of success is $\frac{1}{2}$.
(c) Show that $E[X]=\frac{1}{p}$ and $\operatorname{Var}[X]=\frac{1-p}{p^{2}}=\frac{q}{p^{2}}$.

